Laser cutting for beginners

How does it work?

Terminology

- Raster / Bitmap
 - Grid of X and Y coordinates with values in each coordinate. In this case, each coordinate represents a pixel and its values.
- Vector
 - Creation of digital images through a sequence of commands or mathematical statements that place lines and shapes in a plane

Design techniques

Just because you cut in 2d doesn't mean your product has to be 2d

Techniques - Half Slots

- Consisting of two halves
- Pressure fit is usually strong enough
- Remember to put slots on opposite ends

Techniques - Tabs

- Consisting of a "tab" side and a "slot" side
- Similar concept used in finger joints or box joints
- Requires glue to hold
- Easy to plan

Techniques - Living hinge

- Weaken a stiff material enough to bend it
- Requires some calculations to custom fit exact curves
- Visually appealing and allows for non right-angles
- Weaker than other methods

Design process - Conceptualisation

- Draw rough sketches, don't worry about the details
- Rough out the size of the finalised product and its proportions
- Estimate material needed, size and type
- Don't be afraid to start over!

Design process - Planning (Page size)

Design process - Planning (Page size)

			Page Setup		×
Page	Background				
Pap	er format —	500 1a			_
E	ormat	User 🗸			
V	Vidth	210.00 mm 🖨			
F	leight	130.00 mm ≑			
C	Drientation	<u>Portrait</u>			
		○ L <u>a</u> ndscape	Paper <u>t</u> ray	[From printer settings]	~
Mar	rgins —		Layout settings -		
L	eft	0.00 mm 🌻			
R	light	0.00 mm 韋	For <u>m</u> at	1, 2, 3,	~
<u>T</u> op 0.00 mm 🖨		Eit object to paper format			
B	ottom	0.00 mm 🖨			
			OK	Cancel <u>H</u> elp	Reset

Design process - Planning

- There's no such thing as being too prepared! Measure twice cut once!
 - Rough prototypes, you can err on the side of too loose
 - Final prototype, err on the side of too tight
- 'Flatten' your concept sketches
 - You can mock up with cardboard or foamcore
 - Look up online designs for best practices
- Leave reasonable gaps between parts
- Don't forget basic geometry!
 - Remember when you draw circles, the width and height are **diameters** not radius

Design process - Drawing

- While not as good as a pen tool (illustrator), open office's curve is still very useful and flexible
- Don't worry about minor mistakes, you can fix it by moving the points later
- Try to make use of simple geometry to achieve your goal
- Use a ruler or caliper to estimate the dimensions of your drawing
- Keep reasonable space between parts

Printing

Printing

*Different settings are used for different materials! Please consult lab managers or datasheets

Epilog Engraver WinX64 Zing Properties 🥡 💸								
	General Advan	ced Color Mapping						
Resolution: - 1000 - 500 - 400 - 250 - 200 - 100	Job Type Raster Vector Combined	Raster Setting Speed: Power: Engrave Direction: Top-Down Image Dithering: Standard	50 %					
Options Center-Engraving Center-Center Send to Laser Send to Manager	Piece Size (mm) Horizontal: 215,90 Vertical: 279,40	Vector Setting Speed:	15 % 100 % 5000 Hz					
		OK	icel					

Example

Reference http://tinkernology.blogspot.sg/

Troubleshooting

- Vectors are etching / not cutting
 - Are your lines too thick?
- Pressure fit objects too loose
 - Fix with glue
 - Remember the kerv of the laser!
 - '3mm' acrylic are usually 2.85mm
- Etching bitmap has lots of noise / unwanted pixels
 - Clean up the image
 - Etch with the paper on first
- Laser zeroed wrongly
 - Copy the image onto a new document
 - Contact the lab managers (DO NOT zero on your own)

Extra Information

- CNC
 - Computer Numerical Control Commonly used to mistakenly describe CNC mill, CNC represents all machines controlled by calculations and position values, (eg. milling machine, laser cutter, 3d printer)
- G-Code
 - Widely used series of commands to control CNC machines
- Zero Position
 - Position where the laser will take reference from. On the Zing epilogue it's at the top left of the print.
- Laser output
 - Less than 20w : Laser Engraver (can cut thin pieces of paper
 - 20w or above: Laser Cutter and engraver